AD-A127 245 ADAPTIYE ARRAY BEHAYIOR WITH PERIODIC ENVELOPE
MODULARTED INTERFERENCE(U) OHIQO STATE UNIV COLUHBUS

. ELECTROSCIENCE LAB A S AL-| RUHRIS ET AL. DEC 82
UNCLASSIFIED ESL-714585-1 N@@813-82-C-0198 F/G 9/5

i1 .




i
_ _m 8 €3
—— n
— - w .
REEE < - .
[o 38 :
W of og ~g - um I- m m .n
huﬂn—n—muuhu i Nu_o
—— o
= 0 =
o 28
2 R
4 — e g 2 !
— — 2 Q Z 1
N S S .
— & & T .
= === == S 2 oA
— _— = = S
——— T — LI
' .
. ._
.
. NP
Lo
rt *
' Ll
. v
o v
A
...-
O
Sl
(T
_Q«-
4-.-
, 0
|
-
'
1
‘»
..-
' f
f
. g

le-J.. n.. '.uv.!.l AR A S el S T M
., KRR LA ‘. 10 afns’e’s . .
’ v 0v te age Sl e e .-. ..i




I 20 n oo
.

The Ohio State University

ADAPTIVE ARRAY BEHAVIOR WITH PERIODIC ENVELOPE
MODULATED INTERFERENCE

A.S. A] -Ruwais
R.T. Compton, Jr.

The Ohio State University

ElectroScience Laboratory

Department of Electrical Engineering
Columbus, Ohio 43212
Technical Report 714505-1
Contract N00019-82-C-0190
December 1982

2T

ay

Naval Air Systems Command
Washington, N.C, 20361

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

0O

by L J

53 04 26




P . m L o ) ey Y O wywlrwny Ty T o e e s R e e o R e
PE——— Cnar e 4 " - . < BN - s

4
NOTICES

When Government drawings, specifications, or other data are

- used for any purpose other than in connection with a definitely

o related Government procurement operation, the United States

o Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as

in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell

any patented invention that may in any way be related thereto.

Y YN

PRI ST g




3027211
REPORT DOCUMENTATION |} REPORT NO. : . Recipient’'s Accession No
w | e . _Ba7aYs
Li,;;' o 4. Titie and Subtitle T “1s Report oate T —
e ADAPTIVE ARRAY BEHAVIOR WITH PERIODIC ENVELOPE | _December 1982
. MODULATED INTERFERENCE . 7
;‘ . 7. Author(s) T " | 8. Pertorming Organization Rept. No. |
£ A.S. Al-Ruwais and R.T. Compton, Jr. ESL 714505-1
: 9. Performing Orgenization Name and Address "7 110, Project/Tesk/Work Unit No. |
- The Ohio State University ElectroScience Laboratory I ]
N Department of Electrical Engineering 11. Contract(C) or Grant(G) No
Columbus, Ohio 43212 ©
@ N00019-82-C-0190
12. Spomsoring Organizstion Name and Address ) "7 13. Type of Report & Period Covered
Naval Air Systems Command Technical Report
Washington, D.C. 20361 I —
14.
18. Supplementary Notes - o T T e T
"Z-" ‘ 5 R , S .
o —\/7—1 2 g thors ' oo bt /
E n 16. Abstract (L : 200 words) i T T ’ T
3 present- @ method for determining the effects of envelope modulated interference
.. on an LMS,adaptive array. The interference is assumed to have periodic envelope
modulation with a bandwidth small compared to the carrier frequency. For such inter-
ference, the method allows one to calculate the periodic steady-state behavior of the
array weights and the resulting array performance.
As an example, we-compute the effects of an ordinary amplitude modulated (AM)
interference signal on the array. It is shown that such interference causes the array
to modulate the desired signal envelope but not its phase. With a DPSK desired signal,
AM interference is found to have about the same effect on bit error probability as
CW interference.
,X " 1!_ ar <
T
17. Oosument Anelysis o. Descrigtors
5. identifiers/Open-Ended Torms
¢. COSAT! Fietd/Greve
18. Avallsbiiity Staterment T - T 19. Security Class (This Ro-ooﬂ) » 21. No of Pages "7
APPROVED FOR PUBLIC KilEASE . .. Unclassified | = _33__ |
r 20. Security Cisss (This Pege) 22. Price
DISTRIBUTION UNUMITED Unclassified |

Bee ANSI-IN.10 See Instructions on Reverse

i

VNP W T R P -2 SLEPE YT W Y W ]

OPTIONAL FORM 272 (4-7]

(Formaerly NTIS-135)

Department of Commerce

.........




- NTIS GRA&I
DTIC T3
Unanncurced a
) Justi“iclioan_
- By_ ...
Dict
- - ]
Av cles
r—‘" a0 ] -
Dict S iid
.;: , ( cuby
-— f S PECTED
“s ! -

LIST OF FIGURES

I.  INTRODUCTION

TABLE OF CONTENTS

I1. FORMULATION OF THE PROBLEM

ITI. AN EXAMPLE

A. Typical Waveforms

B. The Effect of Angle of Arrival

C. The Effect of Modulation Frequency

D. The Effect of Interference-to-Noise Ratio

E. The Effect of Desired Signal-to-Noise Ratio

F. Bit Error Probability

IV. SUMMARY
V.  REFERENCES

Agcession For

Page

iv

20
22
25
25
25
25
29
32
32




ca

L .
[} PR
. s % e e
‘ a
0

r
s

- it [ 4L X I
IR ERMA A SO
SRR T 4.0,0,5,,°
i

R
P

LIST OF FIGURES

FIGURE

1.

8.

9.

A Three-Element LMS Aray.

AM Interference,

Adn(t') versus time.

84=0°, 01=5°, £4=10 dB.
£;=20 d8, f;=2.

INR versus time,

84=0°, 03=5°, £4=10 dB.
£;=20 d8, f;=2.

SINR versus time.

9d=0°, e‘i=5°, §d=10 dBc
£;=20 d8, fé=2.

m versus 8j

6d=0°, £d=10 dB, fm=2.

amax versus 61

6d=0°, €d=10 ds, fm=2.

[}
m versus fp

9d=0°, £d=0 ds, Ei=20 ds.

4
amax versus fp

6d=0°, Ed=0 dB, €i=20 dBc

Page

23

23

23

26

26

27

27




FIGURE

10.

11.

12.

13.

14.

1
m versus fp

ed=0°, ei =5°, €d=0 dB.

]
amax versus fp

9d=0°, ei =5°, Ed=0 dBo

[}
m versus fpy

ed=0°’ ei=50’ gi=20 ds.

]
amax versus fp

6d=0°, 6i=5°, Ei=20 dB.

Bit error probability versus fp

ed=0°, 913300, Ed=6 dBo

S e e T
..........

Page

28

28

30

30

31

I T G P U W TN VI W G GO W Gy W U G WS WY i W T oW




I.  INTRODUCTION

The performance of an LMS (Least Mean Square) adaptive array [11

“:%é; can be different with modulated interference than with single frequency
(CW) interference. Under certain conditions, interference modulated at
a rate slow enough to be tracked by the array feedback can cause the
weights to vary continuously and prevent them from reaching steady-
state. In this situation the output signal-to-interference-plus-noise
ratio (SINR) from the array varies continuously and the array modulates
the desired signal.

Pulsed interference is a simple example of modulated interference.
The effect of a pulsed interference signal on an adaptive array has been
described in [2]. 1t was shown, for example, that when the array
receives a differential phase-shift keyed (DPSK) communication signal,
pulsed interference increases the bit er~ . probability more than CW
interference for certain choices of the .:ural parameters.

The behavior of an LMS array has also been described for a
double-sideband, suppressed carrier, amplitude modulated (DSBSC-AM)
interference signal[3]. This special modulation was studied because it
results in a differential equation for the array weights that can be

solved. (Arbitrary types of interference modulation lead to an

intractable mathematical problem.) For DSBSC-AM interference, the array

weights satisfy a vector differential equation with properties similar
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to the classical Mathieu equation [4]. By using an approach similar to
the classical technique, it is possible to obtain the complete behavior
of the array weights for this type of interference. It was shown in [3]
that DSBSC-AM interference can cause the array to modulate the desired
signal envelope, but that its effect on bit error probability with a
DPSK signal is not much different than that of CW interference.

The purpose of the present report is to extend the technique used
in [3] to handle interference with more general types of envelope
modulation. The technique we present here requires that the
interference have only envelope modulation (i.e., no phase modulation)
and that the interference modulation be periodic., Also, it must be
possible to approximate the interference modulation with a finite number
of Fourier Series terms. In principle the number of terms used can be
any finite number, but in practice the computational effort increases
with the number of terms.

To illustrate the use of this method, we examine the LMS array
performance with a simple amplitude modulated (AM) interference signal
(a carrier and two sidebands). In general, this interference has the
same effects on array performance as pulsed and DSBSC-AM interference:
it causes the array output SINR to vary with time, and it produces

envelope modulation, but not phase modulation, on the desired signal.
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Section Il of the report presents a method that can be used to
determine the array weights and evaluate the array performance for an
interference signal with arbitrary periodic envelope modulation.

Section III presents calculated results obtained with this method for an

AM interference signal. Section IV contains the conclusions.
II. FORMULATION OF THE PROBLEM

Consider an adaptive array with three isotropic elements a half

wavelength apart, as shown in Figure 1. The analytic signal is(t) from

element j is multiplied by complex weight wj and summed to produce the

array output s(t). The error signal €(t) is the difference between the
reference signal r(t) and the array output s(t). The array weights are
contolled by LMS feedback loops [1,5] and satisfy the system of

equations

dW¥ 4 kew = kS
I (1)

where W = (wy,wp,w3)T is the weight vector, & is the covariance matrix,

o = E(X*xXT) (2)

S is the reference correlation vector,

s = E[X F(t)], (3)
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Figure 1. A Three-Element LMS Aray.
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and k is the LMS loop gain. In these equations, X is the signal vector,
~ ~ ~ T
X = [x(t), x,(t), x3(t)]", (4)

T denotes transpose, * complex conjugate, and E[-] expectation.
We assume that a desired and an interference signal are incicent on

the array and that thermal noise is also present in each element  jnal.

The signal vector then contains three terms,
X = X4 + Xi + X, (5,

where X4, Xj and X, are the desired, interference and thermal noise
vectors, respectively.

We assume the desired signal is CW and incident from angle 64
relative to broadside. (© is defined in Figure 1.) The desired signal
vector is then

- A ol (wot+yg)

Xd Ade Ud (6)

where A4 is the amplitude, wy is the carrier frequency, ¥4 is the

carrier phase angle, and Uq is a vector containing the interelement

phase shifts,

Uy = (1, e %, e7d20a)T (7)

with

¢d = msinby . (8)
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We assume yq is a random variable uniformly distributed on (0,2n).
Next, we assume an envelope modulated interference signal, as shown

in Figure 2, arriving from angle 8;, The interference signal vector is

2, (t)

X; = Aiej(wbt+¢i) ai(t-Ti)e'Jwai

o Ts (9)
ai(t-ZTi)e~J “o'i

where A; is the amplitude, aj(t) is the envelope modulation received on
element 1, ¥ is the carrier phase angle, and Tj is the interelement
time delay,

T =1 sin 9 (10)

u:o

We assume ¢j is a random variable uniformly distributed on (0,2n) and
statistically independent of yq.

We assume the modulation envelope aj(t) is a periodic waveform.
To make the definitions of aj(t) and A; unique, we assume aj(t) has a
peak value of unity during the period:

max aj(t) =1

(11)
0<t<T

where T is the period of ai(t). With this normalization, A? is the peak

interference power per array element. In addition, we assume the rate
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of change of aj(t) is small enough that a;j(t) changes only a negligible
amount during the propagation time 2T; across the array. (Or,
equivalently, we assume that the bandwidth of aj(t) is very small
compared to the carrier frequency w,.) Under this condition, the

modulation envelopes in (9) are all essentially the same,
aj(t) = aj(t-Ty) = aj(t-2T4) (12)

so (9) may be written

X = A (t)el (Sob+¥ )y, (13)
where

U = (1, e-j¢i, 9-52¢i) (14)
with

bi = woTi = wsindy . (15)

Finally, we assume the thermal noise vector is given by
Xp = [n1(t), na(t), n3(t)1T, (16)

where the nj(t) are zero-mean, gaussian thermal noise voltages, all
statistically independent of each other and of Y4 and ¢;, and each of

power o2, Thus,

EDn5*(t)nc(t)] = o265 , (17)
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Under these assumptions, the covariance matrix in (2) becomes

® = 0g + & + O , (18)
with
- Al T 19
oy = AQULU, (19)
_ a2.2 * T 20
and
2
¢, = oI, (21)

where I is the identity matrix.

To compute the reference correlation vector S in (3), the reference
signal :(t) must first be defined. In practice, the reference signal is
usually derived from the array output [6-8]. It must be a signal
correlated with the desired signal and uncorrelated with the
interference. Here we assume the reference signal to be a replica of

the desired signal,

~ j (wot +
r(t) = Are‘](mo wU)_
(22)
Equation (3) then yields
*
S = AAU, - (23)

Equations (18)-~(21) and (23) can now be inserted into (1) to give
the differential equation for the weight vector W,

- . ) - " - : -
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k[P1 + Ausul + AZal(t)ujul TN(t) = kA AQU, . (24)

dW -
®

Before solving (24) we put it in normalized form. First, dividing by

kol gives

dw(t" T = Ar * 25
Tt(-—l*[“‘;d”dud“gia(t)“"]"‘(") Ufg;ud (25)

where

A

2
d
£ —
d o2

input signal-to-noise ratio (SNR) per element.

peak input interference-to-noise ratio (INR) per
o2 element,

Al
e
]
n

and where we have also used a normalized time variable,

t' = kazt = normalized time.

Next, we note that the constant Ap/c on the right side of (25) will just
appear as a scale factor in the solution for W. It has no effect on the
array output signal-to-noise ratios to be computed below. Hence, we

arbitrarily set Ap/o=1 to eliminate it. Finally, by defining

- *T 26
8 o= 1 + UL, (26)

F ¢

s

;?i Equation (25) may be written

E-i

™
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dw(t' 2o oyvu uT ey = * 27
_ér'l + [0, + gaf(th)u U Iu(e") Eq Uy - (27)

Since we assumed ai(t) to be a periodic waveform, af(t') is also

periodic and may be expanded in a Fourier series:

Py . . 1
aZ(t') = 1 peltent (28)
]
where the P2 are the Fourier coefficients and u% is the normalized

fundamental frequency of ai(t'). (u% is equal to qm/koz, where o is

the fundamental frequency of aj(t).) As discussed above, aj(t) is

assumed to have a bandwidth small compared with the carrier frequency

wy. In particular, we shall assume that only a finite number of
coefficients in (28) are nonzera, i.e., that Py=0 for all |a|>L, where

L is some integer. Equation (28) is then

L . LI |
af(er) = 1 peltet (29)
1=-L
Equation (27) is a linear vector differential equation with a
constant source term on the right but with periodic time-varying
coefficients. As has been discussed by D'Angelo [9], the solution for
W(t') will be a periodic function of time after the initial transients
have died out. 1In this report, we do not consider the initial

transients. We concentrate on the periodic steady-state solution for

11
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W(t'). Once any initial transients have ended, W(t') can be represented

by a Fourier Series,

oo ¥ jnupt 30
Wit') = Z_Q C.e (30)
where C, is a vector Fourier coefficient. Substituting (29) and (30)
into (27) and collecting terms with the same frequency, we find that the
coefficients C, must satisfy
. C * T
(jnw I+6,) C + £UU, g PoCo. /sd ud no?  ~=n<= .
(31)
This equation may be solved for the C, by expressing each C, in terms of

its components parallel and perpendicular to the vector U:- To do this,

we form a set of three orthonormal basis vectors* ey

t _ . 32
e e =85 » 1<¢j. k<3, (32)
Jf (where t is conjugate transpose). We let ej be a unit vector parallel
~ ) .
0 Ui’
%*
e, = Yi . (33)
TU*
U;Y;

*The array has 3 elements, so W(t') and Cn each have 3 components,
Three basis vectors are needed to span the space for Cp.
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We let ep be perpendicular to e} and lie in the plane defined by

* *
Ud and Ui‘

*

e, = cluy - x;] (34)

where 7 and « are constants., Enforcing the orthonormality condition

(32) yields

T *
¢ = Yild (35)

*

qui

and
-1/2
. T * 2
= [ uTu* - [YiUd] . (36)
o]ui

The third vector e3 can readily be found from e; and e but will not be
needed below, so we shall not compute it explicitly.

Each coefficient C,, may be written in terms of the unit vectors

ek as

C, =

e~

%,k Sk (37)

k=1

where the an i are scalar coefficients. an x is the component of Cp

along the unit vector ey.

13
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Substituting (37) into (31) and multiplying the result on the left

by e; (for p =1, 2 or 3) gives

jnwm )) % k ka + ) o K f

k=1 k=1 Pk

L 3
t,* T
+ & (epUy) zZ-LP" k§1a"""‘ (Use,)

t *
V/E;- (epud) 6no ’ (38)

where

t 39
fpk-plk. (39)

!
1]
&
[1:4

The values of the fpi may be found from (26) and (32) - (36). The

result is
T * 2
. |Ujuq| 40
fl “Ed_uTu*— . (40)
ivi
- €d 41
f22 1 +‘_§ . (41)
4
ey uluy
- _ Ed Ujld 42
fe=fa~v-== - (42)
u; U,

14
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13 (43)

and

33 (44)

To determine the on g, we proceed as follows. First, since

f* f* .
eqU; = ejly = 0, applying (38) for p = 3 gives

a

n’3 = 0 [Y -“(n(“ .

(45)

Then, since ezu: = 0, applying (38) for p = 2 and rearranging gives

t *
4, "Eq (e2Ud)8no - on,1f21 (46)
n, —
dney * f2
This equation allows us to calculate the oy 7 from ay 1. Hence, the

problem of determining W(t') is reduced to the problem of finding the
%,1.

To obtain the ay 1, we apply (38) for p = 1 and use (46) to
substitute for &y 2. This process yields the following relation between

the an 1:

15
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o*
5 (47)
hn clh,l * 22_ Pz an-z,l =C 6no
where
. ! 2
h = (F11+inum) (fao+inum) - |f12] (48)
" T
" B (Fpptinug) (U712
and
Ty t o fro N\ (49)
=__ 9 [e, - e 0 .
ATHE (1 22 2> d
1

Equation (47) holds for each value of n and is a 2L+1 term
recursion relation between the ay 1. If the values of ay 1 were known
for 2L successive terms, one could find all the other oy j from (47).
However, if one starts with an arbitrary initial set of 2L terms, the
on,1 will not converge. Since the solution for W(t') in (30) must
converge, the ay 1 must approach zero as n+t=, To obtain a solution for
W(t'), we therefore use the following method. We assume that there is
some N such that for all |n|>N, the on,]1 are essentially zero, i.e., we
assume that W(t') in (30) can be adequately approximated by a finite
sum

Cnejm‘*“t (50

~ =

W(t') =

n=-N

16
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If the ay ) are zero for |n|>N, then the recursion relation (47) reduces

to the finite system of equations,

L L] . L] - . . * L] L] * L] 0‘-‘
hy + P, Py P 0 0 0 ||{oN,1 [
+ L] . * L] . L] L] L ] L] m - 0
?-1 hN-l PO Pl P ? (.J .N 1,1 .
] s o o . ¢ o e o c . . ; ) =6
0 0P, Pip Mo * P PymeP O - 01001 X
. e o o o.u e ® o o e o o o ) ._ 6
0 0 0 P, Py hy +P aN,1

The nonzero o 1 can be found by solving (51) numerically.

For this approach to yield accurate results, N must in fact be
large enough that at least 2L of the «, 1 are essentially zero on each
end of the ay 1 vector in (51). If this vector has 2L zeros on each
end, the solution obtained from (51) will be the same as the solution of
the infinite system in (47). In practice, a suitable value of N may be

determined by increasing N until the on,1 vector has 2L terms on each

17
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end that are essentially zero. Experience in specific cases quickly
shows how large N must be. Once the ay 1 are determined, the o 2 may
be found from (46). From oy 1 and oy 2 (and o 3=0), the Cp may be
evaluated from (37) and W(t') from (30).

The time-varying weights in (30) have two effects on array
performance. First, they cause the array to modulate the desired
signal. (The array becomes a time-varying, or frequency dispersive,
channel [10]). Second, the array output signal-to-interference-plus-
noise ratio (SINR) varies periodically with time.

Given a time-varying weight vector W(t'), the desired signal
component of the array output is

- Sat +y)
Syt') = A (tyue © 1, (52)

(where w6=wo/k°2)' To study the modulation on Ea(t), we define

M) Tt yug (53)

aq(t')e
Then aq(t')=Ag|WT(t')ll4| is the envelope modulation and ng(t')=<WT(t')uq
is the phase modulation. Furthermore, we define aqn(t') to be the

envelope normalized to its value in the absence of interference, i.e.,

18
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aq(t') (54)

a, (') =&\ 7
dn T

AdINoUd|
where W, is the steady-state weight vector that would occur without

interference,

Wo = (¢d + ¢n)_15n (55)
(¢4, on and S are given in (19), (21) and (23).) The results below are
presented in terms of agn(t') rather than ag(t') because the effect of
the interference can be seen by comparing agn(t') with unity.

The output desired signal power is

Palt’) = (1/2)E{Isa(t')12} = (1/2)Ag2IWT(t")ua}2 (56)
The output interference signal is

Si(tr) = WI(EX, = Aiai(t)NT(t')Uiej(%ﬁwi) (57)
and the output interference power is

pi(t1) = (U/2ELT, (£)12} = (V2RG )W (Eu1® o (sm)
The output thermal noise power is

P (t') = 92 WLt u(e"). (59)

2
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From these quantities, the output interference-to-noise ratio (INR),

me = Pift) (60)
Pnlt's
and the output signal-to-interference-plus-noise ratio (SINR),
SINR = ___Pd(t’) : (61)

P(ET) * PalE")

may be computed as functions of t'.
In the next section, we present an example to illustrate the use of

this technique.

IIT. AN EXAMPLE

Consider a modulation envelope of the form

"y =1 't 62
a;(t') 1 (1+cosu t') . (62)
;'_"-
. For this aj(t'), the interference is an ordinary amplitude modulated
.-
E‘ signal, as shown in Figure 2, with 100% modulation. The coefficient 1/2
fff in (62) is included to normalize aj(t') as in (11). The Fourier
®
b coefficients of
E" 2 1 12
oo 63
G aj(t') 3 (1+cosw t') (63)
T
a 20
b
[
p."
4 J
g
L. R o L e 1
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(64)

(65)

and

(66)

The system in (51) becomes

*« ® s

00 LI

00000—

(67)

where C and h, are defined in (48) and (49).
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In general, one finds that the number of terms N needed to

construct N(t')-from the series (50) varies with the signal parameters.
In each case, one must increase N until the first four terms on each end
of the oy 1 vector in (67) are essentially zero and until the values of
a,1 for small n are not affected by further increases in N. To solve
(67), we have used Gauss elimination with full pivoting [11,12] and also
double precision (16 decimal places on the VAX-11/780). 1In initial
tests of this method, the weight vector W(t') was checked in numerous
cases against Runge-Kutta solutions [11,12] of (1).

As discussed above, t{me varying weights have two effects on array
performance. They cause the array to modulate the desired signal, and
they cause the array output signal-to-interference-plus-noise ratio
(SINR) to vary periodically with time. In part A below, we show typical
curves of desired signal modulation, output INR and SINR as functions of
time. In Parts B-E, we describe the effect of each signal parameter on
the desired signal modulation. 1In Part F, we assume the array is used
in a digital communication system and describe the effect of this

interference on bit error probability,

A. Typical Waveforms

Figures 3, 4 and 5 show typical curves of aqnp(t'), output INR and
SINR as functions of time over one period of the modulation. These

curves are for the case 64=0°, 8{=5°, £4=10 dB, £;=20 dB and
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Figure 3. Agnp(t') versus time,

84=0°, 67=5°, £q=10 dB,

Ei=20 ds, fm=2.

SINR (d8)

N.
1

INR versus time,
84=0°, 01=5°, Eq=10 d8.
£;=20 dB, f =2.

Figure 4.

Figure 5.
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SINR versus time.

B4=0°, 07=5°, &q=10 dB.
£;=20 d8, f;=z.
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f;=2 (where f$= ;é). As may be seen, for this set of parameters, the
AM interference signal produces substantial envelope modulation, and the
output INR and SINR vary considerably over the modulation period.
Calculations of the phase ng(t') in (53), on the other hand, show

that nq(t') is constant. The adaptive array does not produce phase
modulation on the desired signal with this interference. This important
result occurs for all signal parameters, not just those used in Figures
3 through 5. The same result was also found for pulsed interference [2]
and for DSBSC-AM interference [3].

Figures 3 through 5 are intended merely to illustrate typical array
behavior with AM interference. In general, the desired signal

modulation and the SINR variation depend greatly on the choice of signal

parameters ed’ Ed’ ei

effect of each signal parameter on the desired signal modulaiton., To

» & and f;. In Parts B-E below, we describe the

characterize the desired signal modulation, we define three quantities.
First, we let apax and apjn be the maximum and minimum values of agn(t')
during the modulation period. Then we define
m = 3max - 3min (68)
2max
m is the fractional modulation on the desired signal. We shall refer to

amax as the envelope peak and to m as the envelope variation. In Parts

B-E, we describe how m and apax depend on each signal parameter.
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B. The Effect of Angle of Arrival

Desired signal modulation is small unless 6; is close to 8yp. When
8y is far from 84, the envelope variation m is small and the peak apax

is close to unity. Figures 6 and 7 show typical curves of m and apzx as

functions of 0i for the parameters ed=0°, Ed=10 dB8 and fé=2. Two curves

are shown on each figure, for £j=10 dB and 20 dB.

C. The Effect of Modulation Frequency

The variation m and the peak 3 ax are large at Tow f; and drop as

fé increases. Figures 8 and 9 show m and anax 35 functions of fé for

ax
the case 64=0°, £4=0 dB and £§=20 dB.

N. The Effect of Interference-to-Noise Ratio

For Tow f;, the variation m is largest at high INR., For

intermediate values of fé, m peaks at intermediate INR. a is unity

max
for low fr;' and drops to a minimum at high f';‘. The larger the INR, the

farther Anax drops for large fé. These effects may be seen in Figures

10 and 11, which show m and apax for 84=0°, 84=5°, £4=0 dB and for five
values of £j between 0 and 30 dB.

E. The Effect of Desired Signal-to-Noise Ratio

The variation m is largest and the peak apax is smallest for low

Ed. As &d is increased, m decreases and apax increases. Figures 12 and
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13 show m and apay for 84=0°, 6j=5°, £§=20 dB and for four values of &4

between 0 and 30 dB. It is seen that for a given &4, m peaks at

intermediate values of f;.

F. Bit Error Probability

To evaluate the effect of the time-varying SINR, we assume the
desired signal is a DPSK biphase modulated signal [13]. We assume the
bit rate on the desired signal is much larger than the modulation
frequencies in aj(t). As shown in [2,3], under these conditions we may
determine the effective bit error probability Po by averaging the

instantaneous bit error probability over one period:

5 oog Tmoq -SINREY)

'
e
e m

O

1
2 (69)

Figure 14 shows typical curves of Fé as a function of fé for

84=0°, 6j=30°, £4=6 dB and for several values of £j between -10 dB and

30 dB. It is seen that the average bit error probability is affected

very little by f;. It may be shown that Fé is essentially the same as
that for CW interference with an INR of (3/8)&j, i.e., with the same

time-average power as the AM interference signal,
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ii [V. SUMMARY

f We have developed a mathematical technique for computing the array
i weights when the array is subjected to interference with periodic
!l envelope modulation. Our approach requires that the envelope modulation
é; be modeled with a finite number of Fourier Series terms,
é To illustrate the use of this technique, we have evaluated the
!. effects of an AM interference signal on the array. It was shown that

the major effect of AM interference is to cause envelope modulation, but
not phase modulation, on the desired signal. The effects of each signal
parameter on desired signal modulation have been described. When the
desired signal is a DPSK signal, AM interference was fcund to have
essentially the same effect on bit error probability as CW interference.
These results are similar to those obtained for DSBSC-AM

interference [3].
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